
 MNE-Python 
 Hands-on, 6th Oct 2021 

Hands-on instructions 

First, log in to CIBR server using your favourite method; either with terminal command ssh 
-Y user_name@cibr1.psy.jyu.fi, or NoMachine. Remember that you need to be in the JYU 
network, either physically or via VPN. You can always find help in the CIBR support pages: 
https://cibr.jyu.fi/en/intranet


You can also use your own setup of MNE-Python, but then things might behave differently.


About MNE, Python and scripting 

MNE-Python is a package, or toolbox, built on top of the modern Python programming 
language. MNE-Python internally utilizes also many other Python modules for signal 
processing, visualization, machine learning etc. The main idea in our approach to using 
MNE-Python is to make (short) code snippets or scripts, which take advantage of the high-
level functions and data structures offered by the software, to carry out your data analysis 
tasks. Here, “high-level“ refers to the grade of abstraction, and it works to help users in 
performing the tasks in a clean, robust and standardised manner. Data objects, on the other 
hand, are strongly typed containers and, therefore, are able to contain functions (methods) 
needed to process those data. For example, an evoked data object is able to visualize the 
evoked responses it contains, without user's attention to low-level details.


MNE-Python is a continuously evolving community effort, so there are several versions 
available. On CIBR servers, different versions are kept in their own virtual environments. To 
use e.g. version 0.19, command first “conda activate mne_19”. After that, you can start the 
interactive Python interpreter with the command “ipython”. There are many ways to Python, 
you could try for example Jupyter Notebooks or your favourite IDE. Search yourself for 
more info to find your favorite approach. Finally, start, or import, the MNE module, by 
commanding “import mne” to the Python command prompt. If there are no errors, all is ok.


Once you get your Python interpreter started and MNE imported, it’s good to know that you 
can always inquire information about an object or function by adding a question mark in the 
end; try e.g. “mne?” or “mne.Evoked.save?”. Python also understands tab-completion, so 
just by writing “mne.viz.” and hitting the tab-key should show you some available 
visualization functions. Note that in Python, the module name needs to be mentioned and 
dot-separated to avoid ambiguous names!


During the exercises, copy the commands that you use in a separate text file. That way, you 
will soon have your own script to perform what you accomplish during the training.


1



For future reference, remember that MNE-Python supports an extensive library of tutorials 
and indexed help on-line at mne.tools.


About doing the exercises 

In this hands-on, we will use data in directory /projects/training/data/. In the training folder, 
you can find raw MEG data, averaged MEG data, pre-processed anatomical MRIs, and 
more. Averaged evoked data are by convention named with post-fix -ave, and raw data 
with -raw. There are many other extensions as well, for example -fwd and -inv for forward 
and inverse solutions, respectively. When producing new files during training, put them in 
your own directory so they can be easily removed later, and to avoid mixing with others’.


Capabilities of MNE-Python 

MNE-Python provides a large selection of functions for MEG data processing. You can 
perform almost the entire data analysis pipeline with MNE-Python:


• browse and pre-process raw data (SSS, filtering, bad channels, ICA)


• epoching and averaging (find and process events, visualize)


• perform time-frequency analyses (including phase-locking)


• connectivity analysis


• various tools for multivariate analysis (decoding, RSA)


• some statistical tools, e.g. permutation cluster statistics


• integrate with FreeSurfer for forward model anatomy


• compute and visualize source models (MNE, beamforming, dipoles)


In upcoming Methods Clinics, we will touch on source modeling and decoding, at least.


Exercise 1: Load and plot MEG raw data 
Let’s first load some raw MEG data. We’ll use the data in ‘/projects/training/data/
multimodal_01_raw_tsss.fif’. The function used to read MEG data in FIFF format is 
mne.io.read_raw_fif. Check how this function is used, i.e. which arguments it needs to 
operate correctly, by using the question mark. It is common in MNE examples to name the 
raw data object as raw. This can be done by starting the read command with ‘raw=’, which 
assigns the output of the reader to that variable name. The whole command is thus


2

http://www.apple.com/uk


raw = mne.io.read_raw_fif(‘/projects/training/data/multimodal_01_raw_tsss.fif’)


Then the raw structure, however, includes not only the data itself as numbers, but a lot of 
other information, or metadata. You can check these by asking for the data field called info: 


raw.info


Note that there are no parentheses in the end, because this is not a method (function 
operating on the data), just an attribute data field. Next, check how to plot the raw signals 
by writing “raw.plot?”. You will see that there is a large number of arguments to the 
command, but all of them have a default value. So, we’ll trust the default values for and just 
plot the raw data without any arguments.


raw.plot()


Here we have added the parentheses to indicate that we want to execute this method. Note 
that the plot part here is not a generic Python thing, but a method of the raw data class 
itself, programmed by some extremely kind person for this specific use case.


Sometimes it is instructive to check the data after frequency-domain filtering. Try filter the 
raw data utilizing the filter-method of the raw data object – you will need arguments l_freq 
and h_freq to define the high- and low-pass frequencies, as stated in the help. In the 
read_raw command, the file path was the only argument (a positional one). In Python, you 
can use also use keyword arguments, like path=/myproject/data.fif, where “path” is now the 
keyword to identify the argument. We now use keyword arguments for filtering. In addition, 
we take advantage of the handy chaining property of Python, where the output of the 
previous method is used as the input of the next method:


raw.copy().load_data().filter(l_freq=1, h_freq=40).plot()


Here we needed a small trick to actually load the data into memory - we also first take a 
copy of the original raw data to leave that unchanged. Finally, check all the methods 
available to the raw object by writing “raw.” and hitting tab. You can also find these in the 
on-line reference: https://mne.tools/stable/generated/mne.io.Raw.html


Exercise 2: Epoching and averaging 
Next, we’ll check how the evoked responses look like. Once you have the raw data, you 
need to first look for the trigger-marked events and form the data epochs based on these 
event codes. For this, there is a ready-made function mne.find_events() – ask Python or the 
on-line API reference how to use it. Name the output as events, or anything else if you like. 
Check the program listing in the end of this exercise if you need help. The event codes are 
defined when the experiment is performed, here we will use event ID 2 ().


3

https://mne.tools/stable/generated/mne.io.Raw.html


We will use mne.Epochs to construct the data object which would include the epoched 
data - the Raw data object cannot be used to store epoch data. For the object constructor 
command, you should specify the raw data, the events and the time limits for the epochs. 
Check in which order these are given or if you will use the named keywords to specify the 
arguments. Would you be able to add the baseline period as well? At this point, it could 
also be useful to plot the epochs, either as continuous data or as a raster image. Check the 
plotting methods offered by your Epochs object! Then, we should average the epoched 
data to get the evoked data, yet another type of data object:


evoked = epochs.average()


This will average over all epochs present in epochs data – investigate how to average over 
a given condition only. Hint: when selecting the epochs, what could be the difference 
between the statements epochs[2] and epochs[“2”] ?


There are some additional things that you will need or will prove useful in many tasks, for 
example reject can be used to exclude noisy epochs, and mne.pick_types() can be used to 
pick specific channel types. Check the MNE-Python on-line examples for more info! You 
can try the different plotting methods available for evoked data. What can you do with 
mne.viz.plot_compare_evokeds? If you are unsure which objects you have, ask “whos” to 
show the workspace contents.


Here are commands that can be used in investigating evoked responses. What do they do? 
Extra: which stimulus modalities are the responses associated with?


events = mne.find_events(raw, min_duration=0.003)

reject=dict(grad=4e-10, mag=4e-12) 

epochs = mne.Epochs(raw, events, event_id=[2, 5, 16], tmin=-0.2, tmax=0.5, 
baseline=(None,0), reject=reject)

evoked2 = epochs[“2”].average()

evoked2.plot_joint()

evoked5 = epochs[“5”].average()

evoked5.plot_joint()

evoked16 = epochs[“16”].average()

evoked16.plot_joint()

mne.viz.plot_compare_evokeds([evoked2, evoked5, evoked16])


Exercise 3: Induced responses 

Next, we will use MNE-Python to study neuronal oscillations with TFR analysis. The aim is 
to inspect the difference between TFR of the evoked response and the TFR of the induced 
response in your favourite stimulus category. Basically, the difference stems from the order 

4



of executing averaging and time-frequency decomposition. Take a moment to consider how 
and why does this matter? Which one is more important or interesting to you? Then, try 
understand the commands below, execute them, and check the outcomes. In the end, you 
will compute a TFR constructed after subtracting the average evoked response from each 
epoch prior to computing the TFR. Would this make sense? Note that the channel selection 
here (ch# 167) is entirely arbitrary and you can use any channels you like.


import numpy as np

events = mne.find_events(raw, min_duration=0.003)

raw.info[“ch_names”][167]

epochs=mne.Epochs(raw, events, event_id=16, tmin=-1, tmax=2, baseline=(None,0), picks=[167])

evoked=epochs.average()

ind_tfr=mne.time_frequency.tfr_morlet(epochs, np.arange(4,40), n_cycles=4, return_itc=False, 
zero_mean=True, average=True, verbose=None)

evo_tfr=mne.time_frequency.tfr_morlet(evoked, np.arange(4,40), n_cycles=4, return_itc=False, 
zero_mean=True, average=True, verbose=None)

ind_tfr.plot()

evo_tfr.plot()

diff_tfr = ind_tfr - evo_tfr # How nice!

diff_tfr.plot()


Can you think why there are responses about 500 ms before and after the stimulus?


Exercise 4: Running scripts 

There are several ways to run Python scripts made by yourself or someone else.


In ipython, you can use the “magic” command “%run”:


	 %run -i script.py 

In Linux terminal, you can just command “python” to run the script:


	 python script.py


Note that if you are not saving anything, you will immediately lose all results.


Some environments offer their own ways to run scripts.


You can practice this now: take the text file, where you have copied the working commands 
from this session. Edit it to do the parts that you would like the script to do. Then save the 
file in text format to your home directory - give it a name that ends in suffix “.py”. Then run 
the script, e.g. in ipython. Can you see if it works?

5


	Hands-on instructions

