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Magnetoencephalography (MEG) is an invaluable tool to study the dynamics and connectivity of large-scale
brain activity and their interactions with the body and the environment in functional and dysfunctional body
and brain states. This primer introduces the basic concepts of MEG, discusses its strengths and limitations in
comparison to other brain imaging techniques, showcases interesting applications, and projects exciting
current trends into the near future, in a way that might more fully exploit the unique capabilities of MEG.
Magnetoencephalography (MEG) allows researchers to study

brain activity by recording the magnetic fields generated by the

electrical activity of neuronal populations. A key advantage of

this approach over other techniques is that it can record brain

activity directly and non-invasively with a very high (within milli-

seconds) temporal resolution. This direct relationship between

the recordedmagnetic field and the underlying neuronal currents

means that MEG is not affected by the problems commonly

caused by intermediate processes (such as neurovascular

coupling in fMRI [functional magnetic resonance imaging] or

fNIRS [functional near-infrared spectroscopy]). MEG can thus

generate an information-rich, dynamic representation of large-

scale brain activity. These key strengths of MEG entail that it is

often used by neuroscientists to study large-scale brain dy-

namics in health and disease.

MEG was developed in the late 1960s when magnetic fields

originating from the brain were first recorded using a single

sensor (Cohen, 1968). Since then,MEG systems have developed

significantly in their technical sophistication and now routinely

feature about 300 sensors that cover the whole scalp in a

helmet-shaped design (Figure 1; Box 1). In addition, a new gen-

eration of sensors is currently under development that will

expand the remit and use of MEG in cognitive neuroscience.

Arguably the most exciting developments in the field and its

most significant contributions to neuroscience come from the

ongoing efforts to make better use of this rich and detailed brain

activity signal. These efforts have led to several important transi-

tions in the field. First, the field is moving toward ‘‘single-trial

analyses,’’ in which the variability of brain responses and their

relationship to behavioral changes are explicitly taken into

consideration. Second, the rhythmic components of brain activ-

ity are increasingly being recognized as being of fundamental

importance for brain function and dysfunction; these rhythms

can significantly contribute to our understanding of how the brain

operates. Third, ‘‘activation studies’’ are giving way to ‘‘informa-

tion and connectivity studies,’’ as scientists aim to decode spe-

cific information from brain signals and their connectivity instead

of simply describing the time course of activation. Together,

these technological, methodological, and conceptual develop-
ments, combined with MEG’s inherent advantages, have

created an exciting tool that is ideally placed to make significant

contributions to cognitive neuroscience.

This primer is not intended to be a comprehensive review of

MEG, given the several excellent recent reviews and books on

this topic (Baillet, 2017; Hari and Puce, 2017; Hari et al., 2018;

Lopes da Silva, 2013; Supek, 2013; Hansen et al., 2010). For

this reason, I also do not discuss best practice in the clinical or

fundamental application of MEG but refer readers to other recent

reviews (Gross et al., 2013a; Hari et al., 2018; Keil et al., 2014;

Pernet et al., 2018). Instead, this primer aims to provide a

concise introduction and guide to the most recently reported

developments in MEG technologies. My goal is to provide

readers with sufficient knowledge to appreciate the role of

MEG in neuroscience, to better assess MEG research, and to

understand how MEG could contribute to their own research.

With this in mind, I explain the fundamental concepts of MEG,

including the recording hardware to use, the nature and analysis

of the recorded signals, and also MEG’s applications to neuro-

science research and how it compares with related methods

(Figure 2; Box 2). I also consider its potential future applications

in the field of cognitive neuroscience.

MEG relies on the fundamental physical principle that elec-

trical currents are always associated with magnetic fields. In

the brain, these currents are produced during neural activity

by the movement of ions in intra- and extracellular space.

Ion currents linked to postsynaptic potentials are the largest

contributors to the MEG signal (Lopes da Silva, 2013). Presyn-

aptic neurotransmitter release leads to postsynaptic dendritic

transmembrane currents, which cause changes in the local

field potential (LFP) at the dendrite and soma of a neuron.

This results in a primary intracellular current along the soma-

dendritic axis of the neuron (Lopes da Silva, 2013), along

with an extracellular return (or volume) current in the opposite

direction. When these electrical currents flow simultaneously

across neighboring neurons with a similar dendritic orienta-

tion, the corresponding individual magnetic fields add up to

a detectable field strength that can be recorded by MEG

sensors near the scalp (H€am€al€ainen et al., 1993). Thus,
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A B Figure 1. MEG System
(A) A MEG system inside a magnetically shielded
room that consists of several layers of mu-metal.
The whole-head MEG system with 275 SQUID
sensors inside the helmet-shaped dewar can be
seen through the open door.
(B) MEG recordings are obtained from a participant
with SQUID sensors in the dewar surrounding the
participants head.
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postsynaptic currents in neocortical pyramidal neurons are the

primary contributors to the MEG, since these neurons have a

clear soma-dendritic axis, which is typically locally aligned

with neighboring cells and perpendicular to the cortical surface.

Modeling studies and invasive recordings suggest that the syn-

chronous activation of a few tens of thousands of neurons leads

to robustly detectable signals (Murakami andOkada, 2006). The

recorded amplitude of the MEG signal largely depends on three

factors: the number of activated neurons, their temporal syn-

chrony, and the degree of their spatial alignment. Thus, a re-

corded MEG signal provides an approximate representation of

the synchronized (also below spiking threshold) fluctuation in

the membrane potential of many neurons. However, while syn-

aptic potentials are considered to be the main contributors to

the MEG signal, non-synaptic potentials can contribute as

well. For example, action potentials and even fast sodium

spikes are known to contribute to LFPs, even at frequencies of

around 100 Hz (Buzsáki et al., 2012; Pesaran et al., 2018), and

they might contribute to the MEG signal if they are temporally

precisely synchronized across a local population of neurons

(Murakami and Okada, 2006).

Building Blocks of an MEG Study
In this section, I discuss the versatility ofMEG along three dimen-

sions: recruitment, recording, and readout (Figure 3).

Recruitment

Most published MEG studies are based on relatively modest

participant numbers (about 20). However, larger-scale data

collection is possible and should be encouraged in the form of

single or multi-center studies, with the results published as

open-access data, to improve statistical power (Button et al.,

2013) and reproducibility (Poldrack, 2019). Such large, open

datasets also help us understand the mechanisms that underlie

inter-individual differences in large-scale brain dynamics and

behavior. As an example, resting-state MEG studies have inves-

tigated heritability and genetic determinants of the amplitude and

frequency of brain oscillations and their connectivity (Colclough

et al., 2017; Lepp€aaho et al., 2019). MEG data can also be co-

registered and merged with functional and anatomical MRI data

allowing to exploit the complementary nature of the signals. In

the future, we will hopefully see more large-scale MEG data

collection projects and their subsequent open sharing and

publication (such as the Human Connectome Project [HCP]; Lar-

son-Prior et al., 2013; Cam-Can; Taylor et al., 2017;

MOUS; Schoffelen et al., 2019; or Omega; Niso et al., 2016)
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and for MEG data to be combined with

other data types such as (f)MRI, neuropsy-

chology, and biomaterials (for example,
blood, saliva, urine, stool). Thiswill facilitate studies of body-brain

interactions andother factors shaping inter-individual differences

in brain activity.

Recording

In general, two different MEG recording types are performed:

event-based recordings where (often transient) stimuli are

repeatedly presented; and continuous recordings, where partic-

ipants rest or perform a continuous task (such as making hand/

finger movements, or processing continuous sensory stimuli).

MEG data can also be acquired in combination with other sig-

nals, leading to novel applications that can potentially make

significant contributions to neuroscience.

Signals. MEG/EEG is an excellent tool to study the dynamics of

interactions between body and brain. As described in more

detail below, MEG, in combination with source analysis, yields

spatiotemporal maps of brain activation with excellent temporal

and good spatial resolution. The use of experimental paradigms

to probe cognitive functions additionally results in measures

of behavioral performance that can be used to identify brain-

behavior relationships. This classic approach can be further

extended at the data acquisition stage by recording additional

signals that capture aspects of body or brain state. In MEG

studies, it is common practice to record the electro-oculogram

(EOG) to facilitate the identification of artifacts related to eye

movements or blinks (Gross et al., 2013a). Eye movements can

also be recorded more precisely using MEG-compatible eye-

trackers that sample at up to 1–2 kHz. Additionally, they allow

recording pupil size as a proxy for arousal (Meindertsma et al.,

2017). Another often-used additional signal is the electromyo-

gram (EMG), which records muscle activity. This can be used

tomeasure different aspects ofmovement also inmovement dis-

orders and can be combinedwithmotion tracking devices (Marty

et al., 2015). Besides classic examples of recording EMG from

arm muscles it can also be used to study swallowing (Suntrup

et al., 2013) or speech (Alexandrou et al., 2017). Other signals

that can be recorded alongside MEG include electrodermal ac-

tivity (EDA) (Wessing et al., 2013), the electrocardiogram (ECG)

(Park et al., 2014), electrogastrogram (Richter et al., 2017), and

blood pressure or respiration (Myllyl€a et al., 2017). Overall, these

additional signals (together with MEG here called MEG+ signals)

provide a rich, dynamic, multivariate characterization of the body

and brain state and behavior (Figure 3).

Interventions. Interventions are sometimes made during an

MEG study to probe and change brain states in a controlled

manner and to observe how this change is reflected in MEG+



Box 1. MEG Hardware

MEG systems are based on highly sensitive sensors that non-invasively record—outside of the human head—minute magnetic

fields that are generated by neural activity in the brain. Current state-of-the-art, whole-head systems use about 300 sensors

that are spatially arranged in a helmet-shaped Dewar (cryogenic storage container). The Dewar is filled with liquid helium at a tem-

perature of about�269�C—just four degrees Celsius above absolute zero temperature. Current commercial, whole-head systems

use SQUID sensors (Superconducting QUantum Interference Devices). These sensors operate in the state of superconductivity

and allow very weak magnetic fields to be measured in the femto-tesla range (H€am€al€ainen et al., 1993). More specifically, each

SQUID is coupled to a pickup coil and measures the changing magnetic flux through this coil. Superconductivity affords these

sensors a high sensitivity; typical MEG signals recorded from the brain have an amplitude in the order of 100 femtoTesla (fT).

This is 7–8 orders of magnitude lower than the earth’s magnetic field and still about 3 orders of magnitude smaller than the mag-

netic field generated by the heart. To avoid excessive contamination from ambient magnetic fields, MEG systems are operated in a

magnetically shielded room (Figure 1).

MEG systems are relatively expensive to acquire and to maintain. Despite optimal thermal insulation, helium boil-off is unavoid-

able, which in many of the currently (older) operating systems requires the dewar to be refilled with expensive liquid helium 1–2

times per week, leading to operational downtime and increased costs. The latest-generation MEG systems come with integrated

cold-heads that, in a closed system, liquefy most of the boiled-off helium, thereby reducing operating costs and downtime.

In recent years, a new type of sensor has emerged for measuring neuromagnetic signals, called an optically pumped magnetom-

eter (OPM) (Alem et al., 2017). A typical OPM design uses a photodiode to measure the intensity of laser light after it has passed

through a gas-filled glass cell. The wavelength of the laser is precisely tuned to the resonance frequency of alkali gas atoms in the

cell (Boto et al., 2018). Changes in themagnetic field lead to changes in light transmission that are precisely detected by the photo-

diode. The sensitivity of OPMs has significantly increased in recent years and is now similar to that of SQUID sensors. However,

OPMs do not require the expensive and high-maintenance cryogenic components. Instead, OPMs operate at room temperature

(the sensor contains insulation since the alkali gas is heated to about 150�C). An OPM sensor can therefore be integrated into a

mobile system (Boto et al., 2018) and can be placed directly onto the scalp. The reduced distance between sensors and the brain

leads to a significant increase in signal power, by a factor of 5–7, compared to SQUIDs (Iivanainen et al., 2017). While OPMs are

highly promising, they are limited by a relatively low signal bandwidth (about 150 Hz compared to several kilohertz for SQUIDS). In

addition, future whole-head multi-channel OPM-based systems will need to account for cross-talk between neighboring OPM

sensors.
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signals and behavior using online and offline approaches. Online

interventions are applied during MEG+ recordings. In a standard

cognitive MEG experiment, short sensory stimuli are repeatedly

presented to participants who might have received instructions

to perform certain tasks on these stimuli (such as detection,

discrimination, etc.). Other tasks might not use sensory stimuli

(for example, self-pacedmovements, inner speech, etc.). Cogni-

tive tasks during MEG+ can be combined with transcranial elec-

tric stimulation (TES) or deep-brain stimulation (DBS). Recently,

the growing interest in brain oscillations has led to an increased

use of continuous, and sometimes naturalistic, sensory stimuli

(or continuous movement tasks) that can be conveniently

analyzed with spectral signal processing methods. Examples

are the use of continuous speech (Gross et al., 2013b) or contin-

uous movement (Jerbi et al., 2007). This is of interest for the

study of brain rhythms that can be monitored with MEG while

they are modulated by or entrain to incoming sensory stimuli

(Giraud and Poeppel, 2012; Thut et al., 2012).

Offline interventions are applied between MEG+ sessions. In

general, a ‘‘baseline’’ MEG session is recorded, the intervention

is performed, and then one or more MEG sessions are recorded

to assess the effect of intervention on brain activity. This

approach is particularly suited to interventions that are incom-

patible with online recordings such as TMS, pharmaco- or psy-

chotherapy. The combination of approaches illustrated in

Figure 3 leads to versatile applications that have not been fully

exploited so far.
Readout

MEG+ signals can be transformed to yield information-rich

readouts that help to study the complex multi-directional depen-

dencies between body, brain, and behavior in health and dis-

ease. They are typically processed using source analysis (see

next section) to reveal how neural activity unfolds across space,

time, and frequency and how these activity patterns relate to

behavior. More recently, the focus has shifted from the mapping

of activation to the mapping of information or representations.

For example, information theory can be used to identify brain

areas where neural activity measured with MEG or EEG contains

information about specific stimulus features (such as the eye in a

visually presented face) (Ince et al., 2017; Quian Quiroga and

Panzeri, 2009; Schyns et al., 2011). Multivariate analysis enables

the mapping of ‘‘representations’’ (Cichy et al., 2014). The

following sections will introduce concepts that help understand

relevant readouts.

MEG Analysis
In this section, I provide an overview of MEG data analysis and

the key concepts involved to equip researchers with the neces-

sary and essential background knowledge they will need to un-

derstand MEG data analysis. For more detailed accounts of

MEG data analysis in cognitive or clinical studies, I refer readers

to several recently published books and articles (Brette and Des-

texhe, 2012; Cohen, 2014; Gross et al., 2013a; Hari and Puce,

2017; Hari et al., 2018; Keil et al., 2014).
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Figure 2. MEG and Other Recording Techniques
(A) Measuring brain activity: this schematic figure illustrates the recording of brain activity with fMRI, fNIRS, MEG, and EEG. Current flow (black arrow) is
associated with magnetic fields (red lines) that can be recorded with MEG. SQUID sensors (red coil) operate in liquid helium and need a thermal insulation that
leads to a physical separation from the scalp. OPM sensors (red rectangle) operate at near room temperature and in close proximity to the scalp. EEG electrodes
(green) are attached to the scalp and record potential differences to a reference electrode. fMRI and fNIRS are sensitive to changes in blood oxygenation that are
caused by neural activity.
(B) MEG and other recording techniques. MEG is compared to EEG, fMRI, and fNIRS. The bar graph shows for each aspect a comparative ranking of all four
methods. High bars indicate high performance. Temporal resolution: MEG and EEG have the same higher resolution compared to fMRI and fNIRS. Spatial
resolution: fMRI has the highest spatial resolution followed by MEG where spatial resolution is less affected by models of head conductivity compared to EEG.
Coverage: modern MEG and EEG system have sensors covering most of the scalp (and for EEG sometimes the face) but typically have reduced coverage of
prefrontal areas and cerebellum, while fMRI does not have this limitation. fNIRS has limited coverage. Signal: MEG/EEG signals are more directly related to
neuronal activity compared to fNIRS and fMRI. MEG signals are less distorted by changes in tissue conductivities compared to EEG. Silence: MEG, EEG, and
fNIRS are silent recording techniques in contrast to fMRI where gradient coils produce noise during data acquisition. Mobility: mobile systems exist for EEG and
fNIRS but not for fMRI. New MEG-OPM sensors can be integrated in more mobile MEG systems. Affordability: fMRI systems are most expensive, followed by
MEG and more affordable EEG and fNIRS systems. Please note that this graph is not the result of a quantitative, precise assessment.
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MEG Source Analysis

MEG source analysis aims to identify the neural generators of the

recorded magnetic fields. It is a central part in most MEG

studies, motivated by the fact that interpretation of functional

data is typically more meaningful when they can be assigned

to the underlying anatomical brain areas. Source localization is

based on two fundamental concepts: the forward and the in-

verse problem (Figure 4). Solutions to the forward problem

model the magnetic fields at known sensor locations that are

generated by a current with known location and orientation in a

specified head model (see below). By contrast, solutions to the

inverse problem identify the location and orientation of currents

based on the recorded magnetic field. Practically, identifying the
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location of a source current from measured MEG signals starts

with solving the forward problem. This requires the construction

of a head model that specifies the spatial distribution of tissue

conductivities. Individual anatomical MRIs are used to produce

two types of state-of-the-art, realistic head models: boundary

element models (BEMs), which model tissue surfaces; and finite

element models (FEM), which model tissue volumes of the entire

head. Currently, advanced FEM models differentiate between

several tissue types and their associated conductivities such

as skin, skull compacta, skull spongiosa, cerebrospinal fluid

(CSF), and gray and white matter (Vorwerk et al., 2014). The

headmodel is used to compute solutions of the forward problem

at known sensor locations, typically for a single, infinitesimally



Box 2. MEG Compared to Other Non-invasive Neuroimaging Methods

A number of methods for recording brain activity exist. Here, I discuss advantages and limitations of MEG in comparison to EEG,

fMRI, and fNIRS (Figure 2).

MEG VERSUS EEG

As a non-invasive recording technique, MEG is most closely related to electroencephalography (EEG) (Biasiucci et al., 2019). Both

techniquesmeasure the consequences of transmembrane currents (Buzsáki et al., 2012; Pesaran et al., 2018) but in different ways.

Whereas MEGmeasures the extracranial magnetic fields predominantly related to primary dendritic currents, EEG records poten-

tial differences that reflect volume currents across different locations on the scalp. Therefore, the distortive effect of especially skull

and skin compartments is larger in EEG than in MEG (Figure 2A). As a result, the spatial distribution of measurements across

sensors, arising from a specific active neuronal population, is less distorted for MEG than it is for EEG (Vorwerk et al., 2014).

For the same reason, the localization of the activated neuronal populations in EEG is much more sensitive to errors in modeling

the distribution of tissue conductivities in the head, compared to MEG. This problem is exacerbated by the fact that these tissue

conductivities, which are required for accurate head models, are notoriously difficult to measure. MEG and EEG signals also

differ in their sensitivity to the orientation of neuronal currents. In contrast to EEG, MEG is less sensitive to radial currents than

to tangential currents. This complementarity means that researchers may opt to use simultaneous EEG and MEG recordings to

localize the underlying generators (Aydin et al., 2015; Sharon et al., 2007).

MEG VERSUS BLOOD-FLOW IMAGING TECHNIQUES

Both fMRI and fNIRS signals are only indirectly related to neural activity because they record associated changes in blood oxygen-

ation levels (Figure 2A). Instead, and as already discussed, MEG signals are directly coupled to neural activity via the generated

magnetic fields, which travel at the speed of light and undergo minimal distortion by the tissues they pass through. Another key

advantage of MEG (and of EEG) compared to fMRI and fNIRS is the excellent temporal resolution of under 1 ms they provide

(Figure 2B). Thus, MEG is the preferred method for studying the fast dynamics of brain activity and connectivity. However,

fMRI has significantly higher spatial resolution compared to MEG while providing full brain coverage. Instead, spatial resolution

in MEG is inhomogeneous across the brain, decreases with distance from the sensors, and depends on the signal-to-noise ratio,

the location, orientation, and spatial extent of the activated neuronal population.MEG can have a spatial resolution in themillimeter

range for cortical brain areas (Barnes et al., 2004) especially if head movements are restricted with a flexible headcast (Bonaiuto

et al., 2018). However, MEG registers neural activity in subcortical areas with lower sensitivity and spatial resolution compared to

cortical areas. Nevertheless, there is converging evidence that MEG can record activity from deep-brain structures such as

hippocampus, amygdala, thalamus, and the brainstem (Pizzo et al., 2019; Pu et al., 2018; Ruzich et al., 2019).

In summary, compared to other commonly used non-invasive recording techniques in cognitive neuroscience, MEG’s strengths lie

in its ability to directly, silently, and non-invasively record neural activity with full-brain coverage at high temporal and good spatial

resolution. It is therefore ideally suited for studying the dynamics of large-scale neural activation and connectivity throughout

the brain.

MULTI-MODAL STUDIES

Interestingly, MEG can be combined with other complementary techniques to obtain either a multi-modal readout of brain activity,

or to modulate brain activity before or during MEG recordings. An obvious and standard example is the simultaneous recording of

MEG and EEG, which is motivated by their partial complementarity, as described earlier. This setup can be further extended by the

simultaneous acquisition of invasively recorded EEG data from implanted depth electrodes in patients (Dalal et al., 2009; Gavaret

et al., 2016). Similarly, LFPs can be recorded from patients using implanted DBS electrodes (Hirschmann et al., 2011; Litvak et al.,

2011). A key strength of these setups is that they can be used to obtain precise recordings from a few target locations using an

invasive approach, as well as non-invasive recordings from the whole brain. Surprisingly, it is even possible to record MEG signals

during DBS, for example, to investigate howDBSmodulates cortical activity (Abbasi et al., 2018; Oswal et al., 2016). Since fNIRS is

an optical technique it can be simultaneously recorded with MEG to enable electrophysiological signals to be related to blood-

oxygen-level-dependent (BOLD) signals (Mackert et al., 2008).

MEG AND NEUROSTIMULATION

Non-invasive neurostimulation techniques such as TMS and TES offer exciting applications for potential treatment of neurological

and mental health disorders or for probing the causal relevance of specific neural activity patterns (such as brain oscillations) for

cognitive processes (Thut et al., 2017). Although MEG can be combined with TES one limitation of this approach is that TES

(Continued on next page)
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Box 2. Continued

generates very strong artifacts during MEG recordings. Nevertheless, modern SQUID sensors can tolerate the currents that are

typically applied through electrodes on the scalp during TES (about 4mA). Indeed, several studies have reported the use of electric

stimulation during MEG, using alternating (tACS) or constant (tDCS) currents (Herring et al., 2019; Ruhnau et al., 2016). However,

removing the corresponding artifacts from the MEG signals is not trivial because the amplitude of the artifact is modulated by a

number of rhythmic and non-rhythmic processes, such as heartbeat, respiration, head movement, and changes in electrode

impedance (Noury and Siegel, 2018). Another important consideration for MEG-TES studies is the optimization of the stimulation

parameters, including electrode location (Dmochowski et al., 2011; Opitz et al., 2018;Wagner et al., 2016). Stimulation of a specific

target area is only possible with the use of computational models that are based on realistic volume conductor models (Huang

et al., 2017; Wagner et al., 2014) ideally derived from individual anatomical MRIs (Liu et al., 2018). Modern multi-channel TES

systems offer further degrees of freedom to control the path, focality, and orientation of induced currents to optimally stimulate

a target area (Baltus et al., 2018). This is a promising and active research area driven by the exciting prospect of combining spatio-

temporally detailed electrophysiological recordings with a versatile neurostimulation technique.
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small current segment with a specified location and orientation

(called the equivalent current dipole) (Figure 4). The solution of

the forward problem therefore relates a single current source

to the expected magnetic fields at the sensor locations. Impor-

tantly, the magnetic fields generated by more complex and

spatially extended currents can also be computed (as a linear

superposition ofmagnetic fields) from these elementary sources.

Solutions to the inverse problem make use of this relationship

and aim to identify the locations and orientations of elementary

current sources in the brain that explain components of the re-

corded magnetic field. There is no unique solution to the inverse

problem, and different inverse methods impose different con-

straints that lead to different representations of the underlying

generators (Baillet et al., 2001; Wipf and Nagarajan, 2009).

All inversemethods require the specification of a sourcemodel

that approximates the underlying continuous current density dis-

tributionwith a finite number of parameters. The choice of source

model therefore constrains the result. The classic source model

is the multi-dipole model, which aims to explain the measured

magnetic field with a small number (typically <10) of equivalent

current dipoles. More recently, distributed source models have

become increasingly popular. These models describe currents

as vector fields across the brain at a pre-defined spatial resolu-

tion (between about 4 and10 mm). The source estimation can be

constrained, for example, by restricting currents to the gray mat-

ter. An orientation constraint can also be incorporated when

solving the inverse problem to locate sources perpendicular to

the local cortical surface according to the preferred orientation

of pyramidal neurons. Several open-source software packages

exist to perform MEG source analysis (Baillet et al., 2011;

https://www.biomagcentral.org).

In summary, MEG source analysis can be used to reconstruct

the brain’s neural activity with relatively high fidelity in space

and time. This ability to observe and study large-scale brain dy-

namics in a non-invasive and regionally specific manner is a key

strength of MEG, which also translates directly into two further

advantages: its use in the study of brain rhythms and functional

connectivity.

MEG Spectral Analysis

MEG spectral analysis utilizes the high temporal resolution of

MEG data to study brain rhythms. A standard MEG spectral

analysis involves performing a source analysis (i.e., solving the
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inverse problem) to identify regions of interest (ROIs) and esti-

mating the neural activity with millisecond temporal resolution.

Methods based on the Fourier or wavelet transform are then

used to create time-frequency representations (TFRs) that quan-

tify the temporal modulation of frequency-specific brain rhythms

over time (Cohen, 2014). With suitable experimental paradigms,

this is a versatile and powerful approach to identifying brain-

behavior relationships (Figure 3).

MEG is also an excellent tool for functional connectivity anal-

ysis that studies how different brain areas interact to process

information. The whole-brain coverage provided by MEG and

its excellent temporal and good spatial resolution generate rich

data that are well suited for investigating statistical depen-

dencies between brain areas (Bastos and Schoffelen, 2016;

Pesaran et al., 2018; Schoffelen and Gross, 2009). Yet, in inter-

preting estimates of MEG (or EEG) connectivity, one needs to

be aware of some important limitations (Gross et al., 2013a;

Palva et al., 2018): the main limitation is that each activated brain

area is recorded by all MEG sensors, albeit at different ampli-

tudes that depend on the location and orientation of the acti-

vated neuronal population. Therefore, even a single activated

brain area will lead to a common signal component in all sensors,

which results in spurious ‘‘connectivity’’ between these sensor

recordings. The hallmark of this spurious connectivity is that it

is due to a common signal with no delay across different sensors.

This makes the interpretation of connectivity results—at the level

of sensor recordings—very difficult if not impossible. This prob-

lem can be partly addressed by using source analysis. But even

source analysis does not achieve a perfect un-mixing of the

signals (Schoffelen and Gross, 2009). Directed connectivity

measures such as Granger causality can alleviate this problem

because they are insensitive to these spurious zero-lag interac-

tions (Bastos and Schoffelen, 2016). However, other factors

such as signal-to-noise ratio, the source localization method,

or inaccuracies in the head model will still affect the quality of

the connectivity estimate and need to be considered (Cho

et al., 2015; Mahjoory et al., 2017; Palva et al., 2018).

A complementary approach for functional connectivity anal-

ysis is dynamic causal modeling (DCM), which are discussed

in more detail in Emerging Topics. While Granger causality is

data driven and makes few assumptions about the observed

system, DCM is model based and allows hidden states and

https://www.biomagcentral.org


Figure 3. The Building Blocks of an MEG Study
The figure shows the different parts of an MEG study that can be adapted according to the specific purpose of the study.
Recruitment: especially in large-scale cohort studies, the rich MEG data can be complemented with detailed clinical and epidemiological data but also with other
imaging data such as (f)MRI.
Recording: typical MEG studies record MEG/EEG and behavioral data (such as accuracy and reaction time [RT]). In addition, peripheral signals can be recorded
simultaneously to allow for a more detailed analysis of body-brain interactions. A range of online or offline interventions can be employed such as continuous
tasks (e.g., movements or isometric contraction), sensory stimulation, TES, TMS (transcranial magnetic stimulation), DBS, medication, or other forms of therapy.
Underlined interventions can also be applied in a rhythmic mode with the aim to interact with intrinsic brain oscillations.
Readout: MEG source analysis leads to spatiotemporal functional maps that are characterized by excellent temporal and good spatial resolution. This can
be used to characterize the activation of specific brain areas in response to sensory stimulation, or in relation to a specific task (red line). The activation
time series can be transformed to the time-frequency domain to study the relationship between brain rhythms and behavior. Combining MEG data with
decoding or information analysis can result in a time series representing the decoding performance over time or the information about a certain stimulus
feature that is coded in the MEG signal (illustrated by the black line representing decoding of two conditions [blue versus red dots]). MEG connectivity
analysis quantifies statistical dependencies with applications in the study of brain-brain coupling, body-brain coupling, or brain-environment coupling.
(Connectivity plots were created with https://immersive.erc.monash.edu/neuromarvl/.)
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variables to be estimated. In general, connectivity analysis is an

exciting tool when performedwith the required caution and inter-

preted with an awareness of its limitations.

MEG Applications
In this section, I draw on examples from the recent literature to

provide a selective overview of how MEG and its applications

are making significant contributions to cognitive neuroscience.

I also discuss challenges in the field, interesting developments,

and their potential applications in the near future. We start with

the general topic of temporal dynamics and then focus mostly
on studies of brain rhythms, which have received increasing in-

terest in recent years.

Temporal Dynamics of Information Processing

The main strength of MEG compared to other neuroimaging

methods is that the silently recorded MEG signals allow neural

activity to be reconstructed across the brain with excellent

temporal and good spatial resolution. These information-

rich data are thus ideally suited for studying large-scale

neural dynamics in the information-processing brain. Indeed,

from the beginning, the excellent temporal resolution of

MEG has been exploited to identify different stages of
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Figure 4. Forward and Inverse Problem
The forward and inverse problem are based on models of the MEG measurement process.
Top: an activated neuronal population leads to the summation of magnetic fields associated with electrical currents. These magnetic fields (displayed with
isocontour lines) are detected non-invasively outside the head with MEG sensors (plotted as blue disks).
Bottom: regional brain activity arising from interacting excitatory and inhibitory neurons across the different cortical layers can be modeled with a neural mass
model (NMM, e.g., Symmonds et al., 2018). NMMs can account for different receptor types. The primary currents representing the accumulated currents of
several tens of thousands of neurons are modeled with single current dipole. Solving the forward problem requires precise knowledge of the measurement
geometry. This is modeled with a 3D head model and sensor positions obtained during the recording. The Maxwell equations can then be used to compute
magnetic fields at the sensor locations for a current dipole with a given orientation at a certain location in the head model. The inverse problem describes the
process of inverting this model. Recorded magnetic fields are used to estimate parameters of the generative model such as parameters of the NMM or location
and orientation of currents associated with activated neuronal populations. (The high-resolution brain slice is from big brain atlas; Amunts et al., 2013; the layer 5
pyramidal neuron is from http://opensourcebrain.org/; Hay et al., 2011.)
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information processing (e.g., Nishitani and Hari, 2002; Ploner

et al., 2002).

More recently, multivariate analysis methods have been used

to better understand the specific cognitive processes that are

reflected in the recorded MEG signal. One of these methods,

representational similarity analysis (RSA), quantifies the similarity

of stimuli, behavioral responses, or brain responses across con-

ditions (Kriegeskorte et al., 2008). In MEG, this similarity can be

computed on a sample-by-sample basis time-locked to the

onset of a stimulus. RSA can thus provide—when applied to

source-localized MEG data—insights into the spatiotemporal

evolution of stimulus representations in the brain, as well as

into brain-behavior relationships and the explanatory power of

computational models (Hebart et al., 2018; Klimovich-Gray

et al., 2019). Similarly, multivariate decoding has been used to

elucidate dynamic brain correlates of conscious perception

and dual task interference (King et al., 2016). Here, decoding

algorithms identify where and when brain activity contains infor-
196 Neuron 104, October 23, 2019
mation that can be used to identify the corresponding sensory

stimulus or experimental condition. In the context of decoding,

the high temporal resolution of MEG is particularly advantageous

for two reasons. First, it helps to characterize the spatiotemporal

progression of stimulus-related neural processes throughout

the brain. Second, it can be used to study how a decoding algo-

rithm, trained using data from a certain latency after stimulus

onset, leads to significant decoding performance when applied

to temporally neighboring data points. This ‘‘generalization’’ of

a decoder may allow inferences to be made about the temporal

dynamics of distinct stages of information processing (King and

Dehaene, 2014).

Another appealing way to capitalize on the rich MEG signal is

based on information theory and is complementary to decoding

approaches (Quian Quiroga and Panzeri, 2009). It also offers a

mathematically rigorous way to quantify linear and non-linear

dependencies in data using mutual information (Ince et al.,

2017). Mutual information has recently been complemented

http://opensourcebrain.org/
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with measures that quantify the representation, or transfer, of a

specific feature of a stimulus (such as the mouth of a happy

face) more directly (Schyns et al., 2011; Zhan et al., 2019). Inter-

estingly, current developments that aim to decompose statistical

dependencies between three signals (such as auditory stimulus,

visual stimulus, and brain activity) make it possible to compute

brain maps that represent unique information about each stim-

ulus, as well as their synergistic or redundant interactions (Ince

et al., 2017). Redundancy quantifies the information about the

MEG signal that is common to or shared between the two stim-

ulus signals and synergy quantifies the extra information that

arises when both signals are considered together.

Generally, these recent developments in this area of MEG

research focus on better characterizing the ‘‘meaning’’ of

large-scale neural activity instead of simply describing the

time course of activation in each brain area. These and similar

approaches have also been used to investigate brain rhythms,

as I discuss next.

Brain Rhythms and Spectral Signatures

Rhythmicity in brain activity is a fundamental and defining prop-

erty of neural dynamics in humans and animals (Buzsáki et al.,

2013; Wang, 2010), and neural rhythms form an important

component of the MEG signal. Rhythmicity arises through pre-

cisely timed interactions of neuronal excitation and inhibition,

leading to rhythmic changes in LFPs that can be recorded

throughout the human brain. Neuronal firing rates are modulated

by the phase of oscillations (Lakatos et al., 2007), and the dy-

namic evolution of LFP phases contains information that is com-

plementary to that contained in spikes (Kayser et al., 2009).

These cyclic excitability changes make brain rhythms a suit-

able mechanism for supporting information processing with ac-

curate temporal coordination, a prerequisite for human behavior.

Buzsáki and colleagues summarize this by stating that brain

oscillations ‘‘form a hierarchical system that offers a syntactical

structure for the spike trafficwithin and across circuits at multiple

timescales’’ (Buzsáki et al., 2013). This dynamic functional

structure complements the more static anatomical structure

and allows the flexible task-dependent routing and gating of in-

formation flow within anatomically constrained networks. It is

therefore not surprising that brain oscillations and their task-

dependent modulations have been linked to a wide range of

cognitive tasks, such as working memory, attention, perception,

and language (Wang, 2010). In addition, evidence exists that

these brain oscillations reflect brain states, encode stimulus

and task-relevant information, are expressed by individual brain

areas in a characteristic manner, and cause rhythms in action

and perception (Buzsaki, 2006; VanRullen, 2016). Furthermore,

pathologically altered brain rhythms are associated with a variety

of neurological and mental health disorders (Schnitzler and

Gross, 2005; Uhlhaas et al., 2018). For more detailed information

on the importance of brain rhythms, I refer readers to relevant re-

views (Buzsáki and Draguhn, 2004; Fries, 2015; Schnitzler and

Gross, 2005; Siegel et al., 2012; Thut et al., 2012; Wang, 2010).

Across this research field the concept of spectral signatures

is an emerging topic that has received significant interest. In

this context, the term spectral signature (or spectral fingerprint)

refers to a characteristic organization of brain rhythms or their

coupling across space, time, and frequency that is reliably asso-
ciated with a cognitive process, behavioral state, or neural

dysfunction (including dysfunctions arising from neurological

diseases or mental health disorders). Some examples are dis-

cussed below.

Resting-State Spectral Signatures

ManyMEG (and EEG) studies have investigated resting-state ac-

tivity in healthy participants and patients (e.g., Cabral et al., 2017;

Engels et al., 2017; Mandal et al., 2018; Uhlhaas et al., 2018). The

spatiospectral structure of brain activity in this state is shaped

and constrained by anatomical connectivity and by the area-

specific anatomical substrate (Mars et al., 2018), and it leads

to functional correlations between brain areas that are reported

as resting-state networks in fMRI studies (Park and Friston,

2013). These fMRI resting-state networks have an electrophysi-

ological correspondence, namely, resting-state amplitude corre-

lations especially in the alpha (7–13 Hz) and beta (15–30 Hz)

frequency band that can be observed in MEG recordings

(Brookes et al., 2011; Florin and Baillet, 2015). In addition to

these band-specific long-range connectivity patterns, the

anatomical microstructure of each brain region also produces

characteristic local spectral signatures (Keitel and Gross,

2016). More recently, the concept of spectral signatures in rest

has been extended. Vidaurre and colleagues used hidden

Markov models (HMMs) to describe resting-state MEG data as

a sequence of a finite number of states (Vidaurre et al., 2018).

These states correspond to brain networks that have specific

spectral properties (power spectra) but also specific functional

connectivity and are consistent with fMRI resting-state net-

works. State transitions were found on relatively fast timescales

of about 100–200 ms. Consistent with the previously reported

spectral signatures (Keitel and Gross, 2016), this suggests that

resting-state brain activity recorded with MEG shows a region-

ally specific organization in spectral power and spectral

connectivity that can be characterized by a finite number of

states. This begs the question how these spectro-temporal sig-

natures of resting-state activity shape human behavior and are in

turn modulated by behavior.

Spectral Signatures in Perception and Spatial Attention

Already in a simple target-detection task, the state of brain oscil-

lations at stimulus presentation is related to detection perfor-

mance (van Dijk et al., 2008). MEG and EEG studies have

demonstrated that near-threshold stimuli are more likely to be

detected when the amplitude of ‘‘alpha’’ (about 10 Hz) oscilla-

tions is low in parietal-occipital brain areas compared to when

the amplitude is high. Recently, it was suggested that this is

caused by changes in the perceptual experience (Iemi and

Busch, 2018). In general, this indicates that the brain state—as

it is reflected in ongoing brain oscillations—determines the fate

of a near-threshold stimulus (that is, whether and how a target

is seen). These findings can be explained with the above-

mentioned fact that brain oscillations represent excitability

changes in neuronal populations (Haegens et al., 2011; Romei

et al., 2008). Similar results have been reported in studies of

spatial attention. Instructing participants to covertly shift visual

attention to one hemifield leads to a sustained decrease in the

amplitude of alpha oscillations in contralateral occipito-parietal

brain areas (Bauer et al., 2014; Foxe and Snyder, 2011; Thut

et al., 2006). The amount of alpha modulation is related to
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behavioral performance (of detecting a subsequent target) indi-

cating a functional role of alpha oscillations in the gating of

target-related stimulus information.

Spectral Connectivity Signatures

Distinct functional roles of brain rhythms in different frequencies

might have an anatomical basis. Feedforward projections typi-

cally start in supragranular layers and terminate in layer 4 of

the cortex, whereas feedback projections predominantly start

in infragranular layers and terminate in layers other than layer 4

(Markov et al., 2014). A recent study capitalizes on the specific

strength of MEG for non-invasively studying large-scale brain

activity and demonstrated that anatomical feedforward and

feedback connections are associated with connectivity (quanti-

fied with Granger causality) in different frequency bands (Micha-

lareas et al., 2016). Feedforward signals are mediated in the

gamma frequency band, whereas feedback signals are predom-

inantly conveyed in the alpha/beta frequency bands. This model

of frequency-specific communication channels suggests that

directed connectivity derived from source-localized MEG data

might potentially be used as a functional ‘‘marker’’ to disambig-

uate feedforward and feedback processes that often occur

simultaneously and are notoriously difficult to separate—espe-

cially in non-invasively recorded data. Overall, the empirical

anatomical and functional data largely support a computational

model that builds on predictions and prediction errors in a hier-

archically organized neural architecture (Friston et al., 2015).

This has important implications for our understanding of patho-

logical mechanisms underlying various neurological and mental

health disorders (Friston et al., 2014). Within this predictive

coding model, it has been suggested that pathological changes

in the precision of predictions or the processing of predictions or

prediction errors can possibly explain symptoms observed in

autism (Lawson et al., 2014), schizophrenia (Limongi et al.,

2018), chronic pain (Ploner et al., 2017), and tinnitus (Sedley

et al., 2016).

In general, MEG is an excellent tool to study spectral connec-

tivity signatures and the sophistication of these studies has

increased over recent years. Schoffelen and colleagues recently

used Granger causality analysis to identify spectral connectivity

signatures during reading (Schoffelen et al., 2017). They report

Granger causality effects from middle temporal areas to anterior

temporal and frontal areas in line with information flow along the

auditory cortical hierarchy. In addition, several studies have

uncovered spectral connectivity signatures that rely on cross-

frequency coupling (CFC). The hallmark of CFC is a significant

statistical dependence of phase or amplitude between two

time series at different frequencies and has been implicated in

inter-area communication (Bonnefond et al., 2017). CFC signa-

tures across large areas of cortex are evident in resting-state re-

cordings (Florin and Baillet, 2015) might be pathologically altered

in patients (Antonakakis et al., 2016) and support coordinated

information processing during cognitive tasks such as working

memory (Siebenh€uhner et al., 2016).

Spectral Entrainment Signatures

Spectral signatures in the brain are not only evident in rest and

modulated during tasks but they also interact with rhythmic

signals in the environment in a way that establishes a brain-

environment connectivity. An excellent example is human
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communication. Despite the seemingly continuous nature of con-

nected speech, the auditory and visual speech signals received

by our senses contain rhythmic components, for example, corre-

sponding to the syllable rate (Ding et al., 2017). Recent MEG

studies have shown that frequency-specific brain activity be-

comes temporally aligned to these partly rhythmic amplitude var-

iations in continuous speech (Gross et al., 2013b). This temporal

alignment is most strongly observed at frequencies below 10 Hz

and is thought to be initiated by acoustic edges in the speech

waveform that lead to a phase reset of ongoing oscillations

in auditory cortex (Giraud and Poeppel, 2012). As a result of

the phase reset, brain activity will be temporally aligned to the

quasi-rhythmic structure in speech. Since low-frequency brain

oscillations represent cyclic excitability changes in underlying

neuronal populations, this entrainment leads to preferential pro-

cessing of attended stimuli (Ding and Simon, 2012; Lakatos

et al., 2013). This is likely the result of top-down effects of

higher-order brain areas (left inferior frontal gyrus and left motor

areas) on auditory areas as reported in a recent MEG study

(Park et al., 2015). Taken together, these and other studies sug-

gest that brain rhythms play a significant role in processing

continuous quasi-rhythmic signals from the environment.

Emerging Topics
In this section, I will discuss interesting emerging applications of

MEG that might attract more attention in the future. I will present

this by highlighting individual recent studies that sample the

range of novel applications. This is not intended to be a compre-

hensive overview of new applications and not even of these

particular topics. I rather intend to showcase individual studies

that are representative of emerging topics.

Connecting Body and Brain

In this primer, I promote the idea that MEG is an excellent tool to

study the brain. However, the typical neuroimaging approach of

studying the brain in isolation is inherently flawed because it

ignores the fact that the brain is part of the whole body. This is

important because there are continuous bidirectional interac-

tions between the brain and the rest of the body. The dynamically

changing state of the human body influences brain activity; the

body is, in turn, controlled by the brain, and their mutual interac-

tions and states affect cognition and are altered in disease. MEG

recordings combined with peripheral recordings of body states

are thus ideally suited to study these dynamic interactions (see

Figure 3). MEG can record top-down signals from the brain

that dynamically shape autonomic functions. Recordings of

body signals, such as respiration, heartbeat, pupil dilation, etc.

can be used to characterize certain aspects of the body’s phys-

iological state, which is continuously conveyed to the brain. Such

recordings could help to uncover the principles andmechanisms

that underlie brain-body interactions in health and disease,

which as yet remain largely unknown and virtually unstudied

with MEG or EEG. For example, peripheral infections (which

constitute a change in body state) lead to the production of

pro-inflammatory cytokines that modulate brain function by

inducing sickness behavior such as reduced motor activity and

social withdrawal (Dantzer et al., 2008). In addition, several

studies have demonstrated that information processing in the

brain also transiently depends on dynamically changing body
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states—such as the phase of the cardiac cycle (Critchley and

Garfinkel, 2018; Park et al., 2014). Similarly, the respiratory

rhythm is known to modulate motor and cognitive functions

(Varga and Heck, 2017; Zelano et al., 2016).

The need to take into account physiological signals is particu-

larly important when studying brain rhythms because several

body signals are also (quasi-) rhythmic over a wide range of fre-

quencies (Klimesch, 2018) (such as the piper rhythm in muscle

�40 Hz; Brown, 2000; some eye movements �5 Hz; Otero-

Millan et al., 2008; heartbeat �1 Hz and breathing �0.25 Hz;

Fleming et al., 2011; and gastric basal rhythm�0.05 Hz; Rebollo

et al., 2018). Importantly, even low-frequency (and non-rhythmic)

peripheral signals can modulate the amplitude of higher-

frequency brain activity. These peripheral signals are typically

treated as a confounding signal (if considered at all); instead,

they represent an interesting target for studying mutual depen-

dencies between body and brain signals and behavior. Relevant

analytical approaches have already been developed over the last

20 years in MEG studies of communication between brain and

muscles. For example, continuous isometric muscle contraction

is associated with a temporal coupling of oscillations in the

recordings of muscle activity (EMG) and brain activity (MEG) at

frequencies of about 15–30 Hz (Salenius and Hari, 2003). In

combination with source analysis, functional maps of cerebro-

muscular coupling have been computed and revealed that this

15–30 Hz coupling represents efficient driving of spinal motor

neurons from primary motor cortex (Gross et al., 2001; Schoffe-

len et al., 2005). In summary, these studies illustrate the ubiqui-

tous and continuous dependencies between (rhythmic) body

signals, brain rhythms, and sensory and cognitive processing.

It is of great interest to study this trivariate relationship between

body, brain, and behavior in health and disease using MEG.

Computational Models

Combining MEG/EEG data with computational models has a

long history and holds great promise to further our mechanistic

understanding of brain dynamics. A notable recent example is

a study where MEG, computational modeling, and laminar re-

cordings in animals were combined to identify a generative

mechanism for local beta (15–30 Hz) oscillations (Sherman

et al., 2016). Going beyond modeling of local activity, DCM al-

lows inference on hidden neural network states within a

Bayesian framework based on recordings of brain activity such

as MEG data (Friston et al., 2013). Recently, DCM has been

extended with a neural mass model that reflects the structure

of cortical canonical microcircuits (Symmonds et al., 2018).

This model includes parameters for different receptors such as

NMDA, GABA, and AMPA. The generative model relates recep-

tor-specific time constants and connection strengths to mem-

brane potentials and ultimately to MEG/EEG signals. Bayesian

inversion of the model based on non-invasively recorded MEG

or EEG data therefore allows inference on these parameters

and their selective change in disease (Heinzle and Stephan,

2018). This opens up the exciting possibility to use MEG (and

EEG) to study receptor (dys-)function in health and disease.

Interestingly, this modeling can be combined with ‘‘pharmaco-

MEG’’ where MEG recordings are obtained before and during

administration of pharmacological substances, for example, to

study the relationship between neurotransmitters, brain activity,
and behavior (Bauer et al., 2012; Lozano-Soldevilla et al., 2014;

Moran et al., 2011; Muthukumaraswamy, 2014).

Another type of computational models that has recently

gained interest can be referred to as brain network models

(BNM) (Breakspear, 2017; Stephan et al., 2015). Similar to

DCM, brain activity in each brain area is described by a neural

mass model that aims to model the behavior of local neuronal

populations with a small set of equations. However, unlike

DCM, BNMs can be constructed as whole-brain models. Individ-

ual neural mass models are connected based on anatomical

connectivity information—for example, acquired with diffusion-

tensor imaging (DTI). The local activity at each node is shaped

by input from other nodes and the specific parameters of the

local neural mass model. These local neural mass models are

combined with a forward model that can estimate fMRI, EEG

or MEG recordings from the dynamics of neural mass models.

One example of this approach is implemented in the Virtual Brain

software (https://thevirtualbrain.org/tvb/zwei; Deco et al., 2017;

Sanz-Leon et al., 2015; Schirner et al., 2018). BNMs can be

used to study how changes in parameters of neural massmodels

or their connectivity might lead to changes in recorded brain

activity. Similarly, the effect of neurostimulation (such as TMS

or TES) can be modeled with BNMs (Kunze et al., 2016), for

example, to identify the effect of local stimulation on brain net-

works in comparison with empirical data. In summary, computa-

tional models provide an interesting and complementary path for

the analysis and interpretation of MEG data.

Conclusions
MEG is a powerful tool with highly versatile applications in the

field of cognitive neuroscience. Its main strength lies in non-

invasively recording a signal that is closely related to neuronal

population activity. When combined with source localization

techniques, it yields a rich representation of brain activity with

millisecond temporal resolution throughout the brain. Whereas

MEG cannot compete with fMRI or invasive recordings with

regards to spatial resolution, it is uniquely suited to study

large-scale electrophysiological whole-brain activity. The main

features of MEG, qualifying it for the study of large-scale brain

dynamics are whole-brain coverage, silent and non-invasive

recording, excellent temporal resolution, good spatial resolution,

low sensitivity to uncertainties about tissue conductivities, and

direct coupling of the recorded signal to neural activity indepen-

dent of neurovascular coupling. These advantages notwith-

standing, users need to be aware of strengths and weaknesses

of MEG as a recording technique and of the different analysis

methods. Seeking converging evidence across analysis pipe-

lines combinedwith open science principles will be key to ensure

that MEG studies will have an increasingly relevant impact in

cognitive neuroscience. In the past, MEG has already made

significant contributions to our understanding of the relationship

between the (rhythmic) dynamics of large-scale brain activity

and behavior in health and disease. However, the full potential

of MEG has not yet been fully exploited. I envisage that in coming

years currently emerging trends in the field will merge and trans-

form the way we use MEG in cognitive neuroscience. Specif-

ically, I foresee the following developments: multi-center cohort

studies will collect MEG data on large numbers of participants
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and patients together with deep phenotyping and multi-modal

imaging and will make these data publicly available. These

studies would greatly benefit from standardized task batteries

and analysis pipelines that are currently unavailable. In the

future, combined MEG and EEG recordings might be comple-

mented with simultaneous recordings of a range of body signals

(Figure 3). This will enable novel applications such as studying

body-brain interactions, attributing task-related changes in brain

activity more directly to cognitive processes or simultaneous

changes in body state and identifying body-brain changes in dis-

ease. Machine learning and deep neural networks will likely play

an important role in the analysis of these large datasets.

Furthermore, we can expect to see an integrated multi-modal

framework where these MEG+ cohort data are combined with

computational brain network modeling and neurostimulation to

gain mechanistic insights in brain function and dysfunction.

The next years will also see new generations of OPM sensors

combined into powerful multi-channel systems that will further

expand the remit of MEG and might even allow simultaneous

TMS stimulation. Together, these MEG-assisted approaches

will likely help to identify spectral signatures of specific disorders

to assist with early diagnosis and inform therapy (van Diessen

et al., 2015; Schnitzler and Gross, 2005; Uhlhaas et al., 2018).

This clinical approach can complement endeavors in cognitive

neuroscience where MEG and EEG is used to identify individual

spectral signatures of cognitive processes constrained by indi-

vidual anatomy, shaped by phenotype and decoded with the

help of cohort studies, machine learning, and computational

models. There is well-founded hope that in the near future all

this might lead to a comprehensive taxonomy of brain rhythms

and a better understanding of the main principles that govern

information processing in the brain in health and disease.
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Aydin, Ü., Vorwerk, J., D€umpelmann, M., K€upper, P., Kugel, H., Heers, M.,
Wellmer, J., Kellinghaus, C., Haueisen, J., Rampp, S., et al. (2015). Combined
EEG/MEG can outperform single modality EEG or MEG source reconstruction
in presurgical epilepsy diagnosis. PLoS ONE 10, e0118753.

Baillet, S. (2017). Magnetoencephalography for brain electrophysiology and
imaging. Nat. Neurosci. 20, 327–339.

Baillet, S., Mosher, J.C., and Leahy, R.M. (2001). Electromagnetic brain
mapping. IEEE Signal Process. Mag. 18, 14–30.

Baillet, S., Friston, K., and Oostenveld, R. (2011). Academic software applica-
tions for electromagnetic brain mapping using MEG and EEG. Comput. Intell.
Neurosci. 2011, 972050.

Baltus, A., Wagner, S., Wolters, C.H., and Herrmann, C.S. (2018). Optimized
auditory transcranial alternating current stimulation improves individual audi-
tory temporal resolution. Brain Stimul. 11, 118–124.

Barnes, G.R., Hillebrand, A., Fawcett, I.P., and Singh, K.D. (2004).
Realistic spatial sampling for MEG beamformer images. Hum. Brain Mapp.
23, 120–127.

Bastos, A.M., and Schoffelen, J.-M. (2016). A Tutorial Review of Functional
Connectivity Analysis Methods and Their Interpretational Pitfalls. Front. Syst.
Neurosci. 9, 175.

Bauer, M., Kluge, C., Bach, D., Bradbury, D., Heinze, H.J., Dolan, R.J., and
Driver, J. (2012). Cholinergic enhancement of visual attention and neural oscil-
lations in the human brain. Curr. Biol. 22, 397–402.

Bauer, M., Stenner, M.-P., Friston, K.J., and Dolan, R.J. (2014). Attentional
modulation of alpha/beta and gamma oscillations reflect functionally distinct
processes. J. Neurosci. 34, 16117–16125.

Biasiucci, A., Franceschiello, B., andMurray, M.M. (2019). Electroencephalog-
raphy. Curr. Biol. 29, R80–R85.

Bonaiuto, J.J., Meyer, S.S., Little, S., Rossiter, H., Callaghan, M.F., Dick, F.,
Barnes, G.R., and Bestmann, S. (2018). Lamina-specific cortical dynamics in
human visual and sensorimotor cortices. eLife 7, 7.

Bonnefond, M., Kastner, S., and Jensen, O. (2017). Communication between
Brain Areas Based on NestedOscillations. eNeuro 4. Published online October
22, 2018. https://doi.org/10.7554/eLife.33977.

Boto, E., Holmes, N., Leggett, J., Roberts, G., Shah, V., Meyer, S.S., Muñoz,
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Liu, A., Vöröslakos, M., Kronberg, G., Henin, S., Krause, M.R., Huang, Y.,
Opitz, A., Mehta, A., Pack, C.C., Krekelberg, B., et al. (2018). Immediate neuro-
physiological effects of transcranial electrical stimulation. Nat. Commun.
9, 5092.

Lopes da Silva, F. (2013). EEG and MEG: relevance to neuroscience. Neuron
80, 1112–1128.

Lozano-Soldevilla, D., ter Huurne, N., Cools, R., and Jensen, O. (2014).
GABAergic modulation of visual gamma and alpha oscillations and its conse-
quences for working memory performance. Curr. Biol. 24, 2878–2887.
202 Neuron 104, October 23, 2019
Mackert, B.-M., Leistner, S., Sander, T., Liebert, A., Wabnitz, H., Burghoff, M.,
Trahms, L., Macdonald, R., and Curio, G. (2008). Dynamics of cortical neuro-
vascular coupling analyzed by simultaneous DC-magnetoencephalography
and time-resolved near-infrared spectroscopy. Neuroimage 39, 979–986.

Mahjoory, K., Nikulin, V.V., Botrel, L., Linkenkaer-Hansen, K., Fato, M.M., and
Haufe, S. (2017). Consistency of EEG source localization and connectivity
estimates. Neuroimage 152, 590–601.

Mandal, P.K., Banerjee,A., Tripathi,M., andSharma, A. (2018). A comprehensive
review of magnetoencephalography (MEG) studies for brain functionality in
healthy aging and alzheimer’s disease (AD). Front. Comput. Neurosci. 12, 60.

Markov, N.T., Vezoli, J., Chameau, P., Falchier, A., Quilodran, R., Huissoud, C.,
Lamy, C., Misery, P., Giroud, P., Ullman, S., et al. (2014). Anatomy of hierarchy:
feedforward and feedback pathways in macaque visual cortex. J. Comp. Neu-
rol. 522, 225–259.

Mars, R.B., Passingham, R.E., and Jbabdi, S. (2018). Connectivity
fingerprints: from areal descriptions to abstract spaces. Trends Cogn. Sci.
22, 1026–1037.

Marty, B., Bourguignon, M., Jousm€aki, V., Wens, V., Op de Beeck, M., Van Bo-
gaert, P., Goldman, S., Hari, R., and De Tiège, X. (2015). Cortical kinematic
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